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Permutation Symmetry Control: Higher-order Permutations in the Valence 
Bond Method 

By J. J. C .  MULDER and L. J. OOSTERHOFF* 
(Department of Theoretical Organic Chemistry, University of Leiden, Holland) 

Summary The application of the Valence Bond method 
to the theoretical description of concerted reactions 
furnishes an example of the importance of higher-order 
permutations. 

WHEN applying Valence Bond theory to chemical problems, 
two main approaches may be considered. The first one is 
to use a basis of orthogonalized atomic orbitals1 It has 
the advantage of yielding simple matrix elements but 
necessitates the inclusion of a great number of ionic struc- 
tures because chemical binding is now dependent on the 
interaction of structures which differ from each other by 
electron shifts between neighbouring atoms. In the 
analysis of the mechanism of concerted reactions by this 
method, van der Lugt and OosterhoS found that even the 
completely ionic structures were needed to obtain the 
correct selection rules for these processes. The second 
approach utilizes a basis of non-orthogonal atomic orbitals 
where one might expect that highly ionic structures are less 
important and that even a restriction to covalent structures 
should offer a reasonable description of chemical phenomena. 

Now it becomes a difficult problem, however, to estimate 
the importance of the many higher-order permutations 
which yield non-zero matrix elements. In the treatment 
of concerted reactions with this second method, using only 
covalent structures, we have obtained the surprising result 
that indeed only the inclusion of the highest-order per- 
mutations enables to differentiate between the two modes 
of reaction. 

As has been discussed in the preceding communication,5 
one uses the hypothesis that the transition state in a con- 
certed reaction can be described by a wave-function which 
is a linear combination of two covalent Kekulk-type 
structure functions $A and $B, that participate equally: 

A second function pertains to an excited state belonging to 
the transition state configuration : 

Using a set of non-orthogonal atomic orbitals a,, u2, - *azn 
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the Valence Bond functions corresponding to the structures 
A and B (Figure) are constructed in the standard fashion: 

products of these transpositions having no numbers 
in common : 

* A  = x:EpPal(l)U2(2) a2n(2n) ( P u [  u )  = Si2, * * *, qgn, s;&;,, - - - - * *, 
P 

[12][34]. [2n - 1 2n] (3 )  - * - - *) s;,s;,sq, * * - * * s;2n 

[12n][2n - 1  2n - 21 * * ~ 3 2 1  (4 )  

The summations include all 2n! permutations P each with 
parity eP =& 1 ,  depending on whether P is even or odd. 
The spin functions are denoted as products of bond singlets 
MI = 2-* r .dz>P(j)  - jg( i )Cm. 

(iii) two cyclic permutations of order 292, in cycle 
notation (1 2 3 - - - - 2n) and (2n 2n - 1 * 

(Pul u )  = s,,s2,s,, . S2n- 12nS12n 

* 1 )  : 

In  the study of the reaction modes in concerted reactions 
the essential difference between two modes is the number 
of negative overlap integrals, odd in one mode and even in 
the other. Clearly only the two cyclic permutations (iii) 
differentiate between the modes. Regarding the elements 
<Pu I HI u )  the same distinction is obtained, provided that 
a positive element (a,(i) I hi I ag( i ) )  is associated with a 
negative S,, and,-in agreement with the Mulliken approxi- 
mation-the matrix element (u,(i)u,.(j) I e2/r i j  I ag( i )as( j ) )  
has the same sign as the overlap integral product S,,S,.,.t 
To implement these arguments in the total energy expression 
(6 )  the summation over all the permutations is split up into 
two parts, the sum Z' which pertains to the permutations 
(i) and (ii) and the sum over the two cyclic permutations. 

We substitute : 

In  this shorthand notation, u stands for the orbital product 
which is the same for #+ and $- and X T  is an appropriate 
spin-function-taken to be normalised-which we will 
consider later. For the moment we suppress the index. 
The expectation value of the Hamiltonian becomes : 

The index i refers to the fact that these expressions are 
independent of the occurrence of negative overlap integrals. 
We denote the cyclic permutations by C and we assume that 
there are v negative overlap integrals. 

Here U ,  < O  and S ,  > O  are introduced as the result of the 
application of either one or the other permutation. 
\frith these substitutions the energy becomes : 

The influence of the permutations in the matrix elements is 
most conveniently discussed first starting from a considera- 
tion of the element (Pu  I u),  which can be represented by 
the following scheme: ui + ( - 1 ) "  .2uc E ~ ( C X J X )  

si + (- 1)" * 2% - Ec<CXIX) 
U =  (12)  

~~~~~~~~~~) ; ; : ; : ; aZn(2n) - a2n (2%) > -  We now examine the effect of the cyclic permutations on 

xB = [12n][2n - 1 2n - 21 * * - * [32 ]  where S,, = atomic orbital overlap integral and S,, = 1 .  
If the usual approximation of neglect of non-neighbour 
overlap integrals is invoked, systematic inspection of the 
possible permutations shows that three types of permuta- 
tions give non-zero matrix elements : 

Evidently : 

cXA = (- 1 ) " X B  and CXB = (- 1)"XA (18) 

(i) the identity: (Pu I u )  = <u I u)  = 1 This yields: 

(ii) permutations that are simple transpositions of Cx+ = C x A + B  = (-l)nx+ and 
electron numbers on neighbouring orbitals or cx- = C X A - B  = - (-1)"x- 

t A general discussion of matrix elements bstween antisymmetrized products of non-orthogonal basis orbitals has been given by 
Prossor and Hagstrom.* 
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For a cyclic permutation of order 2n one has eC = - 1 and 
thus one obtains the final energy expression: 

It may be of interest to remark that xA+B and xAqB are 
eigenfunctions of the operator C, which commutes with H .  
Therefore if the spinfunctions xA and xB would not suffice 
to describe the transition state but other spin functions 
should be added-like Dewar structures in benzene-these 
can only combine if they belong to the same eigenvalue of 
C :  & 1. The form of (17) would in that case not be 
changed. 

As has been discussed in the preceding communication,3 
equation (17) demonstrates the combined influence of the 

number 12 of electron pairs and the number v of negative 
overlap integrals on the energy of the transition state in a 
concerted reaction. From the point of view of the applica- 
tion of the VB method it  is most interesting that this 
result could only be obtained including permutations of 
the highest order. 

Concerning the neglect of ionic structures, their effect can 
be included to a large extent in the covalent structures by 
means of a transformation of the atomic orbitals before the 
construction of the structure wave-functions. The trans- 
formation should be such as to cause a heavier non-ortho- 
gonality between neighbouring orbitals without increasing 
the non-orthogonality between non-neighbours. One possi- 
bility is a basis a' obtained by operating with the matrix 
S+g on the original atomic orbital basis.lb 
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